Factored sequence kernels

نویسندگان

  • Pierre Mahé
  • Nicola Cancedda
چکیده

In this paper we propose an extension of sequence kernels to the case where the symbols that define the sequences have multiple representations. This configuration occurs in natural language processing for instance, where words can be characterized according to different linguistic dimensions. The core of our contribution is to integrate early the different representations in the kernel, in a way that generates rich composite features defined across the various symbol dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirichlet space: a survey

6 The multiplier space and other spaces intrinsic to D theory 24 6.1 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 The weakly factored space D D and its dual . . . . . . . . . . . 25 6.3 The Corona Theorem . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3.1 The ∂-equation in the Dirichlet Space . . . . . . . . . . . 28 6.3.2 Corona Theorems and Complete Nev...

متن کامل

Factored A* Search for Models over Sequences and Trees

We investigate the calculation of A* bounds for sequence and tree models which are the explicit intersection of a set of simpler models or can be bounded by such an intersection. We provide a natural viewpoint which unifies various instances of factored A* models for trees and sequences, some previously known and others novel, including multiple sequence alignment, weighted finitestate transduc...

متن کامل

Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver

To solve sparse linear systems multifrontal methods rely on dense partial LU decompositions of so-called frontal matrices; we consider a parallel, asynchronous setting in which several frontal matrices can be factored simultaneously. In this context, to address performance and scalability issues of acyclic pipelined asynchronous factorization kernels, we study models to revisit properties of le...

متن کامل

Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process

‎In this paper‎, ‎we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process‎. ‎This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process‎. ‎There is a parameter $alpha$ to control the complete pivoting process‎. ‎We have studied the effect of dif...

متن کامل

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008